Essai sur la Structure de $VO_2(B)$

FRANÇOIS THÉOBALD,* ROBERT CABALA[†], ET JEAN BERNARD^{*}

* Laboratoire de Chimie-Physique et † Laboratoire de Physique des Solides, Faculté des Sciences et des Techniques de Besançon 25030 Besançon, France

Received May 23, 1975; in revised form December 5, 1975

Reduction of V_2O_5 by several gases and vapours produces several different vanadium oxides, one of which has the formula VO₂. This compound is not the rutile phase nor the usual monoclinic one. This new polymorph, $VO_2(B)$, is monoclinic. The parameters are:

 $a = 12.03 \pm .10$ Å, $b = 3.693 \pm .010$ Å, $c = 6.42 \pm .05$ Å $\beta = 106.6^{\circ} \pm 1^{\circ}$

The space group is C 2/m (C_{2h}^3). X-ray powder data and the electron diffraction pattern can be interpreted on the assumption that this oxide is derived from V_2O_5 by a crystallographic shear whereby one in every two oxygen only (001) planes is eliminated and the adjacent blocks closed up by the vector 1/6 [103]. This structure belongs to the same series as V_6O_{13} .

Introduction

En réduisant V_2O_5 par l'hydrogène vers 320°C, on observe successivement la formation d'oxydes de composition V_4O_9 , VO_2 , et V_2O_3 (17). Ce résultat est très général et les mêmes oxydes sont obtenus avec toute une série de réducteurs.

L'oxyde de composition VO₂ préparé de cette façon a un spectre de diffraction de poudre différent de ceux des variétés rutile ou monoclinique (Tableau I); nous désignons cette variété par la lettre B. De nombreux auteurs semblent avoir observé cette phase ou son spectre mais indépendamment les uns des autres (4-7, 12-15). Nous avons déjà indiqué (17, 18) que des formules variées avaient été proposées: V₆O₁₃ (15, 13); VO₂ (4); VO₂, H₂O (6), VO_2 , yH_2O (y < 0.04) (7), VO_x (12), $V_{12}O_{24}$, H_2O (5) mais une étude chimique et thermogravimétrique nous a montré que la formule était très voisine de VO_2 (18). Une étude structurale de cette nouvelle variété de VO_2 s'imposait. Mais ne disposant pas de monocristal, il a fallu faire ce travail uniquement grâce au diagramme de diffraction des rayons X par la poudre et à la diffraction

électronique. Le présent article donne les résultats ainsi obtenus.

I. Préparation d'une nouvelle variété polymorphe de VO₂. Domaine d'existence de cette phase

1. Réduction de V_2O_5

La phase *B* caractérisée par son spectre de diffraction X (Tableau I) est obtenue facilement en réduisant l'oxyde V_2O_5 par divers réducteurs: l'hydrogène, l'ammoniac, les corps organiques à l'état de vapeur, le soufre. Entre 210°C et 400°C il se forme d'abord V_4O_9 (19, 20)

$$V_2O_5 \rightarrow V_4O_9 \rightarrow B \rightarrow V_2O_3$$

Au-dessus de 500°C, la phase *B* ne se forme plus, mais il se forme V_6O_{13} ou VO_2 (rutile). L'intervalle de température 400–500°C est un domaine compliqué où se produisent des réactions secondaires avec certains réactifs.

La meilleure méthode est la réduction de V_2O_5 par l'hydrogène à une température suffisamment basse pour qu'on n'aboutisse pas directement à V_2O_3 . Il faut opérer pour cela à 320°C par une technique de réductions et de

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain

TABLEAU I

SPECTRE DE DIFFRACTION X DE $VO_2(B)$

Indexation avec la maille ayant les paramètres suivants:

a = 12.02 Å	<i>b</i> = 3.693 Å	c = 6.42 Å
	$\beta = 106.6^{\circ}$	

$\overset{d_{\mathrm{obs}}}{\mathrm{\AA}}$	I/Io	Indices h k l	$\overset{d_{ ext{calc}}}{ ext{Å}}$
6.15	16	001	6.152
5.80	26	200	5.764
5.00	5	201	4.975
3.52	100	110	3.517
3.11	10	202	3.110
3.08	30	002	3.076
2.96	31	40Ī	2.965
2.94	10	111	2.945
2.88	10	400	2.882
2.66	21	310	2.663
2.64	25	31 Ī	2.642
2.49	6	402	2.488
2.35	7	401	2.363
2.28	5	311	2.284
2.25	5	312	2.245
2.22	5	112	2.221
2.05	18	003	2.051
2.01	25	(51]	2.010
2.01	35	60 I	2.004
1.07	F	{510	1.956
1.96	3	1403	1.956
1.845	45	020	1.846
1.755	4	220	1.758
1.745	4	511	1.746
1 70	10	∫601	1.701
1.70	10	113	1.708
1 66	10	∫60 3	1.658
1.00	10	221	1.653
1 50	10	(22Ž	1.587
1.30	10	022	1.583
1.567	10	4 2 Ī	1.566
1 55	20	∫71Ī	1.558
1.558	50	1420	1.555

broyages alternés et successifs. La méthode est longue mais sûre.

Avec le dioxyde de soufre se produit vers 450° C une réaction secondaire qui conduit au sulfate de vanadyle VOSO₄- β . Avec H₂S et certains corps organiques très réactifs, on obtient des spectres de *B* très flous. De plus les corps organiques peuvent s'adsorber sur *B*.

2. Calcination de l'Hexavanadate d'Ammonium $(NH_4)_2V_6O_{16}$

Elle donne aussi B dans certaines conditions. Il en est de même de la calcination de divers vanadates (IV, V) d'ammonium en tubes scellés mais la reproductibilité n'est pas bonne.

3. Domaine de Formation de $VO_2(B)$ dans les Conditions Hydrothermales

B est obtenu en traitant par l'eau dans des tubes de silice l'hydrate de Gain (8) VO₂, $(1 + \varepsilon)H_2O$ et des mélanges d'oxydes dans lesquels *le degré d'oxydation moyen du* vanadium est compris entre 3.90 et 4.10 et pour une température comprise entre 180°C et 220°C. Au-delà de 220°C *B* se transforme (dans les conditions hydrothermales) en un oxyde VO₂(*A*) que nous n'étudierons pas ici et dont nous avons donné le spectre de diffraction X par ailleurs (18), puis en VO₂ rutile entre 300 et 350°C.

$$\frac{1}{4}(V_2O_3 + V_2O_5) \xrightarrow{180^{\circ}C} B \xrightarrow{220^{\circ}C} VO_2(A) \xrightarrow{350^{\circ}C} VO_2 \text{ (rutile)}$$

4. Texture

La phase *B* sèche se présente sous forme d'une poudre noire ayant une surface spécifique de 30 m²/g environ; elle est formée de cristaux microscopiques allongés de 1 μ m de long environ. Les échantillons obtenus dans les conditions hydrothermales ont tendance à former des masses filamenteuses par suite de l'enchevêtrement de ces cristaux allongés.

5. Composition

a. Degré d'oxydation z du vanadium. La mesure directe de z par des méthodes chimiques montre que z est compris entre 3.90 et 4.10 mais pour les échantillons les mieux cristallisés z est très voisin de $4:z = 4.00 \pm 0.02$.

B se distingue donc nettement de V_6O_{13} .

b. Transformation de B en VO_2 (rutile). Un des problèmes les plus délicats concernant la phase B a été la détermination de la teneur en hydrogène (ou en eau). Comme l'hydrogène ou l'eau à l'état de traces sont présents dans tous les réactifs, on s'attend à en trouver toujours dans les produits formés, compte tenu du fait que les réactions sont très longues et que la surface spécifique est importante. Effectivement les échantillons de *B* formés par action de l'hydrogène contiennent l'élément hydrogène même après avoir été séchés sous vide à 20° C (10^{-4} mm Hg). Si l'on formule la phase VO_x, tH₂O, l'analyse chimique donne:

$$0.05 < t < 0.2$$
.

Cependant cela ne signifie pas que l'hydrogène appartienne à la structure. En effet, on s'aperçoit en calcinant *B* sous vide dans une thermobalance que la quasi-totalité de l'eau s'en va avant 400°C sans que la structure change: *les positions des raies de diffraction X* restent identiques et les raies elles-mêmes sont plus nettes. Ce n'est qu'à une température de 400-450°C que *B* donne VO₂ (rutile) avec une variation de masse de l'ordre de l'erreur expérimentale (0.01 H₂O/V):

 $B \xrightarrow{400-450^{\circ}\mathrm{C}} \mathrm{VO}_2 \text{ (rutile)}$

La composition expérimentale est donc: VO₂, 0.01 (\mp 0.01) H₂O, moyennant quoi il est légitime d'écrire la composition idéale de *B* sous la forme VO₂.

Un argument supplémentaire en faveur de l'absence d'hydrogène est le fait que le spectre infra-rouge ne montre pas de bande d'absorption caractéristique du groupe—OH.

II. Indexation du diagramme de poudre grâce à la diffraction électronique. Proposition d'une structure

1. Diagramme de Diffraction X

Le spectre de diffraction X de $VO_2(B)$ le fait ressembler à V_6O_{13} (17) au point qu'en maintes circonstances certains auteurs ont cru avoir affaire à V_6O_{13} au lieu de $VO_2(B)$ (13, 15). Ces confusions se sont produites surtout lorsque les spectres de diffraction étaient flous. Ainsi Tarama et ses collaborateurs (16) ont prétendu qu'en réduisant V_2O_5 par le cyclohexane il se formait successivement V_2O_4 puis V_6O_{13} (1), ce qui est tout à fait improbable, alors qu'en réalité un examen attentif des diffractions X nous a montré qu'il se formait d'abord V_4O_9 puis $VO_2(B)$. Car des différences existent entre les spectres de diffraction de V_6O_{13} et $VO_2(B)$ dont la plus caractéristique est la présence dans le spectre de $VO_2(B)$ de raies fortes à 6.15 Å, 3.08 Å et 2.05 Å, qui ne sont absolument pas indexables avec la maille de V_6O_{13} (Tableau I).

TABLEAU II

délec: Distances Observées en Diffraction Électronique

d_{RX} :	DISTANCES CORRESPONDANTES	DU	Spectre
	DE DIFFRACTION X		

Indices h k l	délec (Å)	d_{RX} (Å)
200	5.84	5.80
110	3.51	3.52
400	2.92	2.88
310	2.70	2.66
510	1.97	
600	1.96	
020	1.85	1.845
220	1.76	1.755
420	1.58	1.567

FIG. 1. Comparaison entre les structures de V_6O_{13} et $VO_2(B)$. S: feuillet simple; D: feuillet double. Une topotaxie est possible entre les deux structures.

TABLEAU III

Coordonnées Atomiques de $VO_2(B)$ Groupe Spatial C 2/mTous les Atomes Sont en Position 4 (i)

	Positions idéalisées (octaèdres réguliers) $y = \frac{1}{2}$		Positions affinées (Incertitude en millièmes) $y = \frac{1}{2}$		Comparaison avec Na _x TiO ₂ (Andersson et Wadsley) $y = \frac{1}{2}$		
Atomes	x	Z	x	Z	Atomes	x	z
V(1)	0.28	0.67	0.305(2)	0.725(1)	Ti(1)	0.2907	0.709
V(2)	0.39	0.33	0.402(2)	0.300(1)	Ti(2)	0.3950	0.300
O(1)	0.33	1.00	0.363(2)	0.991(1)	O(1)	0.371	0.996
O(2)	0.22	0.33	0.238(3)	0.373(9)	O(2)	0.239	0.358
O(3)	0.45	0.67	0.434(8)	0.595(4)	O(3)	0.430	0.624
O(4)	0.11	0.67	0.142(6)	0.729(7)	O(4)	0.149	0.698

2. Diagramme de Diffraction Électronique

Le diagramme de diffraction électronique d'un monocristal obtenu en transmission (75 kV) est un ensemble de taches disposées en losanges. La figure réciproque a pour paramètres:

$$a^* = (11.68 \text{ Å})^{-1}, \quad b^* = (3.69 \text{ Å})^{-1},$$

 $\gamma^* = 90^\circ.$

Ce diagramme ressemble tellement à celui de V_6O_{13} que, pratiquement, on ne les distingue pas. Tous les cristaux étant orientés de la même façon sur le porte échantillon du microscope électronique, nous n'avons pas pu déterminer complètement la maille de $VO_2(B)$ par des mesures directes. Il a fallu pour cela comparer les résultats de la diffraction électronique avec le spectre de diffraction X.

3. Recherche de la Maille de $VO_2(B)$. Proposition d'une Structure

La comparaison des distances interréticulaires calculées à partir de ce diagramme avec celles observées à partir du spectre X de la poudre est effectuée dans le Tableau II. Un certain nombre de distances so correspondent, de sorte que des indices déduits de la diffraction électronique peuvent être attribués à ces raies du spectre de diffraction X. Ces indices se trouvent aussi être ceux des raies correspondantes de V₆O₁₃. Néanmoins, la maille de V₆O₁₃ ne permet pas d'indexer VO₂(B). C'est pourquoi nous avons recherché pour $VO_2(B)$ une maille monoclinique dérivée de celle de V_6O_{13} par modification de *c* et β .

Gillis (9) a montré que V_6O_{13} pouvait être déduit de V_2O_5 en supprimant un plan sur trois dans la famille des plans (001) qui ne contiennent que des atomes d'oxygène. Si l'on supprime un plan sur deux, on aboutit à une structure de formule VO_2 représentée dans la partie inférieure de la Fig. 1. C'est cette structure que nous proposons pour $VO_2(B)$.

Nous déduisons du schéma idéalisé des paramètres de maille qui après ajustement permettent d'indexer complètement le diagramme de poudre (Tableau I)

$$a = 12.03$$
 Å, $b = 3.693$ Å, $c = 6.42$ Å,
 $\beta = 106.6^{\circ}$.

Le groupe spatial est C 2/m. La maille contient 8 VO₂. La masse volumique calculée est 4.04 g/cm³. Les coordonnées des atomes dans la structure idéalisée sont données dans le Tableau III.

III. Arguments supplémentaires en faveur de la structure proposée

En plus de l'indexation du diagramme de poudre un certain nombre de faits confirment la structure proposée:

1. Diffraction électronique. Les paramètres réciproques observés directement en diffraction électronique sont conformes à la maille choisie.

FIG. 2. Schéma idéalisé de $VO_2(B)$.

2. Plans de clivage. Si la coordinence du vanadium est à peu près la même que dans V_2O_5 ou V_6O_{13} , certains atomes d'oxygène sont assez peu liés et les plans de clivage doiven-

TABLEAU IV

FACTEURS DE STRUCTURE DE $VO_2(B)$ Les Intensités Sont Mesurées sur Goniomètre DE POUDRE

πκι	F_0	F_c
001	291	472
200	384	-455
201	197	-249
110	912	871
202	467	442
002	816	946
401	865	-904
111	351	-451
400	506	-523
310	569	-518
3 1 I	625	-592
402	461	451
401	568	569
311	328	338
312	332	337
112	338	-350
003	1 003	976
020	1 751	1 468
220	364	-286
511	365	344
101	687	-640

être les mêmes que dans V_2O_5 ou V_6O_{13} , c'est-à-dire parallèles à (001). Donc les figures observées en diffraction électronique doivent être très semblables à celles de V_6O_{13} et voisines de celles de V_2O_5 , ce qui est bien le cas.

3. Largeur de certaines raies de diffraction X. Il arrive très souvent que certaines raies telles que celles d'indices 001, 002, 003 soient nettement plus larges que les autres. Ces raies correspondent aux distances interréticulaires lorsqu'on se déplace parallèlement à c. Ceci indique que les liaisons sont plus faibles dans cette direction, en accord avec l'orientation des plans de clivage mentionnés plus haut.

4. Ressemblance chimique entre $VO_2(B)$ et V_6O_{13} . Dans de nombreuses réductions

TABLEAU V

Liaisons V–O dans VO ₂ (B) (Incertitudes en Centièmes d'Å)		
	(Å)	
V(V(1) - O(1) = 1.65(2) $1) - O(2^{ii}) = 2.17(5)$	

 $2 V(1) - O(2^{i}) = 1.99(1)$ V(1) - O(3) = 1.95(3) $V(1) - O(4^{il}) = 1.98(5)$ V(2) - O(1) = 1.91(3) $V(2) - O(2^{ii}) = 2.15(3)$ V(2) - O(3) = 1.90(3)V(2) - O(3) = 1.82(3)

 $2 V(2) - O(4^i) = 1.91(3)$

TABLEAU VI

ANGLES DES LIAISONS V-O (EN DEGRÉS) (voir Fig. 3)

$O(2^{111})$ se déduit de $O(2^{11})$ par une translation de -b $O(4^{111})$ se déduit de $O(4^{111})$ par la même translation				
(Incertitu	lue < 5)			
$\begin{array}{l} O(2^{il}) - V(1^{i}) - O(2^{ill}) = 139^{\circ} \\ O(2^{il}) - V(1^{i}) - O(2^{l}) = 72 \\ O(2^{il}) - V(1^{i}) - O(2^{l}) = 72 \\ O(2^{il}) - V(1^{i}) - O(4^{l}) = 80 \\ O(2^{il}) - V(1^{i}) - O(3^{l}) = 92 \\ O(2^{il}) - V(1^{i}) - O(1^{i}) = 109 \\ O(2^{i}) - V(1^{i}) - O(4^{l}) = 86 \\ O(2^{i}) - V(1^{i}) - O(3^{i}) = 70 \end{array}$	$\begin{array}{l} O(2^{i}) - V(2^{i}) - O(4^{ii}) = 77^{\circ}\\ O(2^{i}) - V(2^{i}) - O(3^{ii}) = 148\\ O(2^{i}) - V(2^{i}) - O(3^{i}) = 73\\ O(2^{i}) - V(2^{i}) - O(1^{ii}) = 105\\ O(4^{ii}) - V(2^{i}) - O(4^{iii}) = 150\\ O(4^{ii}) - V(2^{i}) - O(3^{ii}) = 105\\ O(4^{ii}) - V(2^{i}) - O(3^{ii}) = 94 \end{array}$			
$\begin{array}{l} O(2') - V(1') - O(1') &= 177 \\ O(4') - V(1') - O(3') &= 156 \\ O(4') - V(1') - O(1') &= 96 \\ O(3') - V(1') - O(1') &= 107 \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$			

chimiques les conditions de formation de V_6O_{13} et $VO_2(B)$ sont assez voisines: en général c'est essentiellement une question de température. Au contraire V_3O_7 est plus difficile à obtenir par réduction de V_2O_5 . Effectivement la structure de V_3O_7 (3) n'appartient pas à la même série que V_6O_{13} ou $VO_2(B)$.

Les paramètres a et b des deux phases sont si semblables qu'on peut parfaitement imaginer une relation topotactique entre V_6O_{13} et $VO_2(B)$ telle que celle qui est représentée sur la Fig. 1.

Ceci expliquerait pourquoi Hoschek et Klemm (11), qui ne connaissaient pas V_6O_{13} , ont cru observer un oxyde de composition homogène dans le domaine $VO_2-VO_{2, 2}$, alors qu'en réalité il s'agissait probablement d'un mélange de V_6O_{13} et $VO_2(B)$.

5. Intensité des raies et affinement de la structure. Les intensités des raies de diffraction de la poudre ont été mesurées à l'aide d'un goniomètre C.G.R. Vingt et une raies à indexation unique ont servi à affiner les coordonnées atomiques. Pour ce calcul, les facteurs d'agitation thermique ont été fixés à 0.4 Å² pour les atomes de vanadium et 0.8 Å² pour les atomes d'oxygène. Les coordonnées affinées sont données dans le Tableau III. Le facteur de reliabilité $R = \sum |F_c - F_0| / \sum F_c$ vaut 0.101, résultat que l'on

peut considérer comme satisfaisant, compte tenu du fait que les échantillons sont médiocrement cristallisés (Tableau IV).

La bonne correspondance entre les intensités calculées et observées des raies de diffraction de la poudre constitue un argument de poids en faveur de la structure proposée.

Cependant il ne faut pas vouloir tirer trop de renseignements des affinements parce qu'il y a 12 paramètres à déterminer avec 21 mesures seulement. C'est pourquoi nous considérons que le jeu des coordonnées, des longueurs des liaisons et des valeurs des angles obtenu (Tableaux V et VI) est plutôt le point de départ d'une étude précise qu'un résultat définitif.

IV. Description de la structure

Le réseau de VO₂(B) projeté sur le plan (010) est représenté sur la Fig. 3. Les octaèdres VO₆, groupés par quatre dans un même plan (y = 0ou $y = \frac{1}{2}$) par l'intermédiaire d'arêtes communes, forment des feuillets doubles (D) reliés entre eux par des atomes d'oxygène O(1).

L'oxyde $VO_2(B)$ apparaît isotype de la phase Na_xTiO_2 étudiée par Andersson et Wadsley (2) car le réseau TiO_2 de ce corps est tout à fait comparable au réseau VO_2 décrit ici. C'est pourquoi nous avons repris les mêmes numéros que ces auteurs pour les atomes qui se

FIG. 3. Structure affinée de $VO_2(B)$.

correspondent afin de faciliter la comparaison (cf. Tableau III).

Malgré l'imprécision de nos résultats, certaines liaisons V-O se différencient nettement des autres car elles présentent des écarts importants.

Il apparaît que l'environnement octaèdrique du V(1) est le plus caractéristique: l'atome d'oxygène le plus proche, O(1), est à 1.65 Å; le plus éloigné à 2.17 Å. Ces deux atomes d'oxygène sont sensiblement dans un même plan, mais ce plan ne passe pas par V(1); autrement dit, V(1) n'est pas au centre de l'octaèdre VO₆.

Dans $Na_x TiO_2$, Ti(1) contracte aussi une liaison courte avec un atome d'oxygène voisin, mais ce n'est pas le même qu'ici: peut-être s'agit-il d'un effet du cation Na^+ assez proche de O(1).

Les longueurs des liaisons dont s'entoure l'atome V(2) sont comprises dans des limites plus étroites. Andersson et Wadsley ont noté le même fait avec Ti(2) dans Na_xTiO₂.

Bien qu'il y ait un désaccord sur la liaison la plus courte dans $VO_2(B)$ et dans Na_xTiO_2 notre résultat aurait l'avantage de respecter une certaine continuité avec les propriétés de V_2O_5 et de V_6O_{13} . En effet, l'atome O(1) ne contracte que deux liaisons, l'une très courte avec V(1) (1.65 Å) l'autre moyenne avec V(2) (1.90 Å). Tous les autres atomes d'oxygène sont liés à 3 atomes de vanadium, et le clivage s'établit naturellement parallèlement au plan (001), l'atome V(1) emportant O(1) avec lui.

V. Conclusion

La phase *B* n'a pu être obtenue jusqu'à présent que sous une forme mal cristallisée ce qui explique que sa composition ait pu donner lieu à controverse. Mais les échantillons les mieux cristallisés montrent que la composition idéale VO_2 peut être atteinte.

 $VO_2(B)$ se transforme vers 400–450°C sous vide en VO_2 rutile. Dans les conditions hydrothermales l'oxyde rutile est obtenu dès 350°C.

 $VO_2(B)$ apparaît comme la limite inférieure d'une série qui comprend aussi les oxydes V_2O_5 et V_6O_{13} tandis que l'oxyde VO_2 ordinaire rutile ou monoclinique dont la densité est bien plus élevée est la limite supérieure de la série V_nO_{2n-1} .

Remerciements

Nous remercions vivement Monsieur Jean Galy, Maître de Recherches au C.N.R.S., Laboratoire de Chimie de Coordination de Toulouse, de nous avoir signalé la ressemblance structurale entre $VO_2(B)$ et Na_xTiO₂.

Appendice

Après avoir soumis notre travail à l'éditeur, nous avons pris connaissance d'une étude de la réduction de V_6O_{13} en VO_2 effectuée à l'intérieur d'un microscope électronique haute résolution par Horiuchi, Saeki, Matsui et Nagata (10). Ce travail, où les auteurs aboutissent à la même structure que celle que nous venons de décrire, confirme nos résultats et appelle les remarques suivantes:

1. Confirmation de la composition. Ayant comparé la phase B à Na_xTiO₂ nous pouvions légitimement nous demander s'il n'aurait pas mieux valu écrire la formule H_xVO₂ ($x \le 0.02$) plutôt que VO₂. Le travail effectué au sein du microscope électronique par les auteurs japonais avec exclusivement du V₂O₅ et du carbone montre que l'hydrogène n'est pas nécessaire à la stabilité de la structure. La formule idéale est donc VO₂, même si dans certaines conditions l'élément hydrogène peut s'introduire dans les lacunes du réseau.

2. Horiuchi et al. s'étonnent de ne pas pouvoir obtenir $VO_2(B)$ par les moyens chimiques traditionnels en réduisant des masses importantes de V_6O_{13} par le graphite. En réalité le graphite est un des réducteurs les moins bien appropriés à cette opération et de toutes façons la température choisie (>500°C) était trop forte.

3. L'idée d'une relation topotactique entre V_6O_{13} et $VO_2(B)$ que nous avions avancée au paragraphe III. 4 est mise en évidence directement par l'observation en microscopie électronique haute résolution.

Bibliographie

- I. F. AEBI, Helv. Chim. Acta. 31, 8-21 (1948).
- 2. S. ANDERSSON ET A. D. WADSLEY, Acta Cryst. 15, 201-206 (1962).

- 3. S. ANDERSSON, J. GALY, ET K.-A. WILHELMI, Acta Chem. Scand. 24, 1473–1474 (1970).
- M. S. ARCHER, D. S. P. ROEBUCK, ET F. J. WHITBY, Nature (London) 174, (4433), 754–755 (1954).
- 5. D. BRANLY, Thèse de Doctorat de 3e cycle, Lille, p. 62 (1968).
- 6. A. CARTILLIER, Thèse d'Ingénieur Docteur, Besançon, p. 68 (1961).
- 7. A. DESCHANVRES, G. NOUET, ET B. RAVEAU, C. R. Acad. Sci. Paris 261, 3144–3146 (1965).
- 8. G. GAIN, Ann. Chim. (Paris) [8] 14, 224–241 (1908).
- E. GILLIS, C. R. Acad. Sci. Paris 258, groupe 8, 4765–4768 (1964).
- S. HORIUCHI, M. SAEKI, Y. MATSUI, ET F. NAGATA, Acta Cryst. A31, 660–664 (1975).
- 11. E. HOSCHEK ET W. KLEMM, Z. anorg. allgem. Chem. 242, 63–69 (1939).
- 12. K. KATO, M. TANIGUCHI, ET K. KUBO, Kogyo Kagaku Zasshi. 69, 2102 (1966).
- 13. D. POUVARET, Thèse d'Ingénieur-Docteur, Besançon (1963).
- 14. T. SATA, E. KOMADA, ET Y. ITO, Kogyo Kagaku Zasshi 71 (5), 643-647, 647-651 (1968).
- 15. K. TARAMA, S. TERANISHI, ET T. MIYAZAKI, Kogyo Kagaku Zasshi. 55, 68 (1952).
- K. TARAMA, S. TERANISHI, ET S. YOSHIDA, Bull. Institute Chem. Research, Kyoto University 46 (5), 185–197 (1968).
- 17. F. THÉOBALD, R. CABALA, ET J. BERNARD, C. R. Acad. Sci. Paris 266, 1534–1537 (1968).
- 18. F. THÉOBALD ET J. BERNARD, C. R. Acad. Sci. Paris 268 (série C), 60–63 (1968a).
- F. THÉOBALD, R. CABALA, ET J. BERNARD, C. R. Acad. Sci. Paris 269 (série C), 1209–1212 (1969b).
- F. THÉOBALD, Thèse d'Etat, A.O. 3998, Besançon No. 96, 1er février (1975).